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A THEORY OF M]XING IN A STABLY STRATIFIED FLUID

By Robert R. Long
Department of Earth Sciences
The Johns Hopkins University
Baltimore, Maryland 21218

ABSTRACT

A theory is developed for turbulence in a stably stratified fluid , for example

in the experiments of Rouse and Dodu and of Turner. In these there is no shear

and the turbulence is induced by a source of energy near the lower boundary of

the fluid. A growing mixed layer of thickness D appears in the lower portion of

the fluid , separated from the non-turbulent flui d above, in which the mean buoyancy

gradient is given, by an interfacial layer (IL) of thickness h. The lower mixed

layer has a very weak buoyancy gradient and the large buoyancy difference across

IL is th. As indicated by the experiments of Thompson and Turner and Hopfinger

and Toly, and derived by the author in a recent paper , if u is the rms horizontal

velocity and 2 is the integral length scale, uL K is a constant in a layer of homo-

geneous fluid agitated by a grid and at some distance from the grid. When there

is stratification, the fluid motion is unaffected by buoyancy forces in the mixed

layer so that u2 should also be constant in the lower portions of the mixed layer.

Since 2 is proportional to distance , we may conveniently suppose that the source

of the disturbances is at a level z = 0 where u is infinite in accordance with uz K.

Thus we may take K to be a fundamental parameter characterizing the turbulent

energy source. Then z is distance above the plane of the virtual energy source.

If the upper fluid is of uniform buoyancy, Dth = v2 may be shown to be constant

if we acce~~ the experimental observation that h is proportional to D. In general

v may be taken to be a fundamental parameter expressing the stability. The

hk-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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quantity Ri v2 D2/K2 is the most fundamental of the several Richardson

numbers that have been introduced in this problem because, with its use,

“constants” of proportionality do not depend on the molecular coefficients of

viscosity or diffusion (for high Reynolds number turbulence) or on the geometry

of the grid.

The theory contains a number of results: (1) UeD/K âi~~, where u
2

is entrainment velocity, i. e. the rate of increase of D. This implies D ~
1

for a homogeneous upper fluid and D tW for the upper linear density field.

The entrainment law compares with a -~~ law suggested by several experimenters;

(2)The turbulent field in IL is intermittent with intermittency factor I -~ Ri ‘.

The turbulent patches have dimension 8 DRI Th (3) If the rms hori zontal velocity

at some fixed level not far from the grid is denoted by u1, we find that the rms

velocity near the interface is u2 u1 R 14 ; (4) The buoyancy flux near the inter-

face q0 may be expressed as q0 —.u ~/D as suggested by the author in an earlier

paper.

A recent experimental paper by Hopfinger and Toly proposes that uA — u2.

The present theory suggests that the measurements of the rms velocity were

made too far from the interface.

1. IntroductIon.

Experimental observations beginning with those by Rouse and Dod u (1955)

show that if a stably stratified fluid is agitated , say at the bottom of a container,

a mixed layer develops near the bottom of depth D increasing with time. The

mean buoyancy profile observed Is shown schematically in figure 1. The turbulence
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dies out across an interfacial layer (IL) of thickness h. The problem has

great Importance In meteorology and oceanography as discussed by many

authors, for example Kraus and Turner (1967~.

3 Cromwell (1960) constructed a similar experiment to simulate the

pycnocllne but recent interest began with the careful measurements by Turner

(1968) . Subsequently many others have reported on identical or similar ex-

periments (Brush, 1970, Wolanski , 1972, Linden, 1973, Crapper and Linden,

1974, Linden, 1975 , Wolanski and Brush, 1975, Thompson and Turner, 1975,

Hopflnger and Toly, 1976). Other experiments involving shear have been run

by Kato and Phillips (1969) , Moore and Long (1971), Wu (1973), Kantha, 1975,

Kantha, Phillips and Azad (1977) . Typical of these is that of Kato and Phillips

shown schematically in f~~ure 2.

A number of suggestions have been made based on observation. In the

experiment without shear , experimenters agree that the entrainment velocity

U, is given by’

(1)

where Rf’ Is the overall Richardson number defined in the legend of figure 1.

In addition there is strong evidence , presented by Long (1973), Crapper and

Linden (1974) , and more recently by Hopfinger and Toly (1976) , that h = aD

where a Is ndependent of the Richardson number. In Crapper and Linden’s

measurements h was constant as the Richardson number varied from 4 to 6000

‘In this paper , we assume t hat the overall Richa rdson number R.i~ or
similar non-dimensional number Ia. large. If two non-dimensional numbers
A, B have a ratio A/B tending to a finite non~zero constant as Ri * - 

~~~, we say
that A is of order B and write it A — B.  We use the proportionality symbol
connecting two dimensional quantities that vary together.
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so there can be little doubt that a is independent of RI. It Is possthle, however,

that a may vary with the density gradient In the upper layer.

In shearing experiments there is some indication that u, /u~ — RI*_l but

considerable doubt has been raised by recent experiments (Kantha , 1975 , Kantha,

et al, 1977) in the Kato and Phillips tank.
V A suggestion was made by Turner (1973) that the entrainment velocity should

be expressed in terms of th and a velocity and length, u,, ~~~~, characteristic of

the rms velocity and the integral length scale in the mixed layer. Turner suggested

that u, — fS and i2~— D  and (1) implies

~~‘ — R ~ 
2 (2)

U],

where RI, Is the turbulent Richardson number expressed in terms of th , U,

and .~~~~. Long (1975) , however, presented a uniform theory for all cases in which

the buoyancy flux near the interfacial layer q0 —u~/D where u2 is the order of the

velocity in the mixed layer near the interface. This implies an Ri 1 law for u,

if u2 is the velocity used to scale u,, and in the expression for RI2. Long suggested

that the two results for the experiment without shear could be reconciled by assuming

that the small density variation in the mixed layer was sufficient to change the or ler

of magnitude of the turbulent velocities from u, fS in the upper part of the layer
1 4

to u2 — fS Ri” 
~~

‘ or u2 ~ f~. This was investigated experimentally by Hopfinger

and Toly who concluded that the velocities were everywhere proportional to f and

that the Ri,~ ~ law is correct. It is important for later purposes to notice that their

rins velocity measurements were not made particularly close to the interface so

that the observations cannot be said to disprove the theory of the author that

• 
V 

q0 ~~
. u~/D. To avoid confusion between the paper by Long (1975) and the present

paper , we remark that the present paper again finds q0 — u~ /D, but that ua ~ f~.
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2. Governing Parameters.

We begin by considering the best choice of parameters governing the phenomena

In the experiment. The external quantities are the frequency of oscillation of the

j grid f, the stroke S, lengths T~,, M3, . ..  describing the geometry and position of

the grid, and the initial density variation. We asBu~~e that the dimensions of

the tank are large enough to be neglected. In a recent paper (Long, 1977) the

author has shown that the grid may be replaced by a Virtual source of energy at

a horizontal plane. The action of the source is determined by a single parameter

K having the dimensions of viscosity and proportional to the constant eddy viscosity

in the turbulent fluid above the source. When stratification exists, the eddy viscosity

will be constant sufficiently close to the encr~~ source since the velocities are

very high there and buoyancy effects negligible as we will see. The Integral length

scale is proportional to the distance z from the virtual source so that if u~ is of

the order of u in the lower portion of the mixed layer at some height z1, we may

replace K by u, z~ when discussing the relation of experiments to theory.

The role of the density stratification may be examined by integrating the

equation

(3)Dz at

• first over the mixed layer and then over the IL. Let us assume a linear buoyancy

field in the non-turbulent upper layer with buoyancy gradient Na . The mean

V 
buoyancy In the mixed layer is nearly constant with height and equal to

b, b - N a (D+ h) + t~b (4)

where b ,, is constant. We get

V q0 = D ~f - N a D -~1(D÷h) (5)
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V In the IL, the mean buoyancy is

• Th - ~~ (z-D) + b ,3-Na(D+ h) (6)

Integrating (3) , we get

q = q 0 +~~~~~~~-~~~ :+  ~~~~~~~~~~~~~~~~~~~~~~ (7)

where C = z-D. At ~ = h the buoyancy flux is zero. Using this and (5) we get

- ç(~~~h)a , = 0 (8)

If the buoyancy field at the initial instant was the linear field b,,~- Na z , Eq. (8)

• becomes
V 

\D+ lb = f(D+ h)2 (9)

and N is the fundamental parameter characterizing the buoyancy field. Otherwise

the constant

Va 
= l,D+~ ,Ab - ç(D+ h)2 (10)

and N may be used as fundamental constants. If the upper fluid is homogeneous,

V3 = D+ lb is constant. Using h = aD, we obtain Dth = v2 is constant and

F v Is the basic parameter characterizing the buoyancy effect.

3. The Interfacial Layer.

The energy equation at any level z is

0 = - ~~~~~2p/ Po + u3+ v3 + W~~~ 
V — wb - € (11)

where the first term is the energy flux divergence, u, v, w are the velocities ,

p is pressure, Pa is the reference density , q = -wb is the buoyancy flux and ~
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Is the energy dissipation. We must have turbulence, although perhaps intermittent, V

• in the IL. Since the only buoyancy flux occurs in the turbulent regions, we get at

any level

q = —A,u3b3I (12) 
V

where A, is a universal constant , U3 is the order of the velocity, b3 is the rms 
V

buoyancy fluctuation and I is the intermittency factor. The turbulence is certainly

strongly infl uenced by buoyancy in this layer and it is reasonable to assume that

kinetic and available potential energies are of the same order not only in the waves

but in the turbulent patches, i. e .,

2 ~~U3 — uu3 — I)

where 5 is of the order of the dimensions of the patch, and u3 is the rms velocity

in the IL. We get

(14)
h (hTh)2

Using (13) , equation (12) becomes

q = - A3 (15)

where A2 and A3 are universal constants. Let us now compute the dissipation.

This occurs only in the turbulent patches so that

e — ~I~~~-~ ~~~~~~~~ (16)
8 h u3

so that e — q. Since they are both dissipative, it follows that they are of the

order of the energy flux divergence. At the upper boundary of the IL , the
F

kinetic energy of the waves has been so reduced by losses to potential energy

and dissipation, that there can no longer be wave breaking and turbulence.
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V 
Thus h is the depth of penetration of the turbulence. When the upper fluid has

a uniform density, the motion above is irrotational and, neglecting the very small

V time changes of kinetic energy, the energy flux must be zero just above z = D+h

and therefore zero just below. Then the increment of energy flux across the IL

is equal to the energy flux into the bottom of the layer. If there s a density

gradient in the flui d above the IL , energy flux may exist there because of the V

existence of internal gravity waves. At the height z = D +h , however, the V

energy flux is too weak to support turbulence so that it has decreased to a

value well below that at the bottom of the IL. Therefore , in all cases , the

increment in energy flux is proportional to the value at the bottom of the IL.

The constant of proportionality will vary with the density variation in the upper

layer. Integrating between levels just outside of the layer , we get for the mean

buoyancy flux

(17)

where U2 is the rms velocity in region R2 just outside the IL. Obviously since

pressures are continuous, there can be no change of order of magnitude’ of the

velocity across the level z = D so that U 2 — u~ at z = D. Using Eq. (7) we may

write

h - dt 3 di 6 d t  2 di
h d (18)

V 
_ _ _ _ _ _ _ _ _ _  

-N~~D+~~,-~~(D+h)

‘More carefully , we recognize that the bottom of the IL is in wave motion
with occasional small areas of breaking. The fr ont between the turbulence below
and the mostly laminar flow in the IL is very sharp. Instantaneously the pressures
on this surface are of order u~ on the lower side and therefore u on the upper side.

• The latter corresponds to velocities of order u2 — a3 in the lower portion of the IL.
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V ~0 A3 p (19)

A3I0 u~~~~1 = - D~~~~+ N
2
D~ j- (h+ D) (20)

where I~ and 8~ are evaluated at a level just above z = D and c, is a constant

of order one which may vary with the stability of the upper layer.

It is of interest to compute the energy flux in the lower part of the IL. In

the eddies the contribution is of order Iu~. Thus the transfer is due primarily

to the waves and is of order of u2p — u c  where c is the speed of the energy con-

V tam ing waves of length X , i. e ., c —X t,,.~~.) .  Since u~c is of the order of u~ ,

c — a2 or
1

h ’~ (21)

V 

This suggests that the eddies in the region R2 of length X are resonating with

these waves. Since X is of the order of both wave length and amplitude of the

V breaking waves, then 8~ should be of order X.  Comparison of (19) and (21) shows

that this is indeed the case. The bottom surface of the interfacial layer will have V

.- waves of length and amplitude ô~ so that the layer R2 may be considered to be

of thickness 80.

V 

V 

4. Turbulence in the Mixed Layer and Final Results.
V So far we have simply assumed turbulence below the IL without considering

V 

V its properties in detail and the relat ion of these to the flux q0 or to the entrainment

I velocity u,. Let us consider the effect of buoyancy in the R2 layer where the

magnitude of u is a2. Here q — u2b2 — ~~~~
- . Thus b2h ..-.u ~ so that the ratio of

V 

•

~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~
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V 
kinetic to potential energy of the eddies is

b28 5  (22)

4 This is very large, so that the buoyancy variation is unimportant dynamically

V in R2. This will also be true in the mixed layer as a whol e so that in the whole

mixed layer we may assume that the energy dissipation functior. Is determined

by factors independent of the buoyancy. The dissipation function at any height z

in the mixed layer must depend only on K, z and D, i. e. , u3 IL f( K, z, D)

where L is the eddy length. Thus u3z4/LK3 = f(z/D) . At height z = D-50 
‘

~~

‘ D,

the length I is of order 6~ and the velocity is u2 so that

V 

=A~ (23)

where A~ is a universal constant. Using (18)-(20) we may write

lb - ç(D+ h)~~ = 0 (24)

- 
cK~ ~ = ~~~~ + + + 1-~ th~~~—N~ (D+~4(D+ h) (25)

h4D6 (tb)4 t 3 dl di Z d t
4

3 3
5 2 h ’ 4
~~ = A 4 (26)

-A510 = D~~~~ - Na D~ - (h+ D) (27)

where A4 and A5 are universal constants and c is a constant of order one,

V varying with the buoyancy gradient in the upper layer.

We now make the assumption based on the observations discussed in

Section 1 that the thickness of the interfacial layer is proportional to D and
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is independent of the stability. When the upper fluid is homogeneous,Dth = v2

is constant and in terms of the fundamental Richardson number Ri = v2 D2 IK2

we obtain

(28)

c~2 Ri ‘~ (29)

—

- D °~3 ’

c4Bi 4 (31)

where o’~ are constants. As shown by the author (Long, 1977), u, (or K) is

proportional to the grid frequency f so that Eq. (Z8) leads to

— Ri ’~ ~ , Ri” = 
~~~~
). (32)

compared to Ri
*_ 2 suggested by experimenters. Inspection of their data , V

however, reveals little reason to choose one law in preference to another.

Notice that Eq. (28) may be integrated to yield
2 

V

D°t~~

The results in (28)-(31) are the same for the erosion of a linear density gradient

V where, however, the constants may vary with the stability of the upper layer.

The entrainment law now yields D ~ t~~ .

5. Summary and Conclusions.

It is now possible to form a reasonable description of the state of affairs

In the experiment. The oscillating grid is nearly equivalent to a source of

energy on a plane (z 0) as discussed by the author (1977). A single parameter K
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characterizes the source where K has dimensions L2T ’. If the fluid is homo-
V 

• 
geneous, the source started at t = 0, causes a turbulent layer to develop of depth

D — (Kt)~ separated by a front from the non-turbulent fluid above. Thus the

front propagates at a speed proportional to t ~ . After the front has moved far

• I away, conditions ultimately reach a steady state with energy supplied by the

source. In any layer there is a balance between the energy entering at the lower
V 

plane less the energy leaving through the upper plane and the energy dissipation.

The rms velocity components are proportional to each other with universal con-

stants of proportionality. The horizontal component, for example, is given by

(33)

and the integral length scale by

~~= B 2~~~ ) (34)

where v is the molecular viscosity. The energy dissipation € decreases rapidly

with distance from the grid as K3 /z4 . If a passive additive is present , its mean

concentration S is determined by solutions of the equation

(35)

where K,, is the constant eddy diffusivity proportional to K.

If the fluid is initially stratified , the energy source creates a mixed layer

of thickness D, increasing much more slowly with time, separated from the

non-turbulent fluid above by an interfacial layer of thickness h. Although h is

small compared with D, it remains proportional to D . The mixed

V layer has a very weak buoyancy gradient so that dissipation nearly balances the 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - -
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energy flux divergence, and the loss of kinetic energy to potential energy Is

small. This is reflected in the fact that the kinetic energy u2 is much greater

than the available potential energy ib where I is the eddy scale and b is the
V perturbation buoyancy. The eddy length £ is proportional to distance from

the source, becoming of order D in the center of the layer. £ decreases again

toward the interface becoming of order 8o— DRI ‘.

The rms velocity u varies as K/z in the upper part of the mixed layer,

decreasing with z but maintaining a proportionality to K. In the experiment, if

• viscosity is negligible K is proportional to the fV~~quency of the grid f. As we

approach the interface the eddy size decreases ultimately to S~ in the vicinity

of the interface which is disturbed by waves of length and amplitude of order 8~ .

Since the energy dissipation is of order u3/~ , the dissipation tends to increase

by the reduction of I but this is offset by the loss of kinetic energy to heat which

reduces u. If the stability is infinitely great , i. e. (K2 /v2 D2 ) — 0 , the rms

velocity tends to zero at the interface. For finite but small values of KIvD,
1 3 4

we have u2 — (K/D) ñf~ . This indicates u3 ~x f 2  instead of f~ as originally

V 
suggested by the author. The difference lies in the mechanism for the decrease

of u as we approach the interface. The author ’s original suggestion was that

the buoyancy gradient , although weak in the mixed layer, was sufficiently strong

to decrease the kinetic energy at the expense of potential energy. In the present

theory u decreases because of dissipation to heat as the eddy size decreases

near the interface. However , u does not go to zero but to a value corresponding

to a small but non-zero eddy length 5~ , proportional to Ri ‘. This dimension

Is also the dimension of the layer over which the interface moves up and down.

-
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This length was measured by Hopfinger and Toly as proportional to Ri*_l

V where Ri” is proportional to Ri.

The int 3rfacial layer is very stable and has intermittent turbulence with

intermittency factor I — Rf4. The turbulence in patches of dimensions 5~ is

V caused by breaking waves of length and amplitude 8. These are energized by

V resonance with the pressure fluctuations on the lower interfacial surface of

frequency u2 Io~ equal to the natural frequency N = (Th/h)~ . Equating these

and putting h — D leads to ~ — D Ri “‘ as in Eq. (30).

Finally the buoyancy flux varies in both the mixed layer and the interfacial

layer. It is a maximum q0 at the level z D where it is of order u~/D determined

by the rms velocity in the mixed layer close to the interface as suggested by the

V author in an earlier paper. q0 — ue lb where 1e is the entrainment velocity or
7

rate of increase of D and is proportional to Ri~~~. This is close to measurements,

V 

but differs slightly from the Ri *~~ law proposed by the experimenters. The en-

trainment law leads to a variation of D as t~~ compared to D ~ t~ when the upper

fluid has a linear density gradient. In the case of a linear gradient in the upper

fluid the results are as stated above except that the constants of proportionality
~~V V 1

may vary with the stability of the upper fluid. The t~ law reveals a slower rate

of increase for the linear case as expected but it is somewhat slower than that

measured by Linden (1975).
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LEGENDS

FIgure 1. The container has a fluid with variable mean buoyancy profile. The
lower layer of depth D is fully turbulent and has a weak buoyancy gradient.
The buoyancy decreases strongly in an interfacial layer (IL) of thickness h V

between the mixed layer and the non-turbulent layer above, the buoyancy
difference across h being lb. The upper layer has a buoyancy gradient b(z).

V The turbulence is caused by a grid oscillating up and down with stroke S and
frequency f. The geometry and location of the grid is given by lengths M) ,
M2 An Important non-dimensional number is Ri* = DAb!? ~ 2

•

FIgure 2. Kato and Phillips experiment with mean buoyancy profile. The turbu-
lence in the upper layer is caused by a screen moving along the surface
exerting a stress T = u~~, where u* is the friction velocity. An important

V non-dimensional number is Ri* =DAb/u~~.
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V 1 A S S T~~ A C T

V A th eory Is developed for turb ulence in a stably stratified fluid , Vfor example in the
experiments of Rouse and Dodu and of Turner. In these there is no shear and the turbulence
is induced by a source of energy near the lower boundary of the fluid. ,A growing mixed layer

V - of thickness D appears in the lower portion of the fluid , separated from the non-turbulent fluid
V above, in which the mean buoyancy gradient is given, by an interfacial layer (IL) of thickness h ~

V The lower mixed layer has a very weak buoyancy gradient and the large buoyancy difference V

V across IL is lb. As indicated by the experiments of Thompson and Turner and Hopfinger and
Toly, and derived by the author In a recent paper, if u is the rrns horizontal velocity and £ is
the integral length scale, uL = K is a constant in a layer of homogeneous fluid agitated by a
grid and at some distance from the grid. ~When there Is stratification, the fluid motion is
unaffected by buoyancy forces in the mixed layer.Veo that uL should also be constant in the lower
portions of the mixed layer. Since .t Is proportional to distance, we may conveniently suppose V

that the source of ’L~ie disturbances is at a level z(,~ O~where u is infi~Ite in accordance with
uz = K. Th.is we may take K to be a fundamental parameter characterizing the turbulent energy
source. Then z is :llstance ata~ve the plane of the virtual energy source. ‘If the upper fluid Is
of uniform buoyancy, DAb = v may be shown to be constant if we accept the experimental
observation that h Is proportional to D. In general v may be taken’to be a fundamenta l paramet r
expressing the stability. The quantity RI = V3DS/Ka Is the most fundamental of the several
Richardson numbers that have been introduced In this problem because, with its use, ‘~~ nstafl ‘~~~
of proportionality do not depend on the molecular coefficients of viscosity or diffusion (for
high ReynoHs number turbulence) or on the geometry of the grid. V
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13. Abstract (continuation)
The theory contains a number of results: (1) U. D/K Rf T , where u~ Is entralnn

velocity, i. e. the rate of increase of D. This implies D t~~ for a homogeneous upper
and D t~’ for the upper linear density field. The entrainment law compares with a -41
suggested by several experimenters; (2) The turbulent field in IL is intermittent with m t
mittency fact~r I -.. al’. The turbulent patches have dimension 6 DRC4 ; (3) If the n v
horizontal velocity at some fixed level not far from the grid Is denoted by u1, we find tb~
rms velocity near the interface is u~ u2 RI 4 ; (4) The buoyancy flux near the interface 

V

may be expressed as q0 — ‘u~/D as suggested by the author in an earlier paper.
A recent experimental paper by Hopfinger and Toly proposes that u~, u3. The pr

theory suggests that the measurements of the vms velocity were made too far from the ii
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